Generalized Calabi correspondence and complete spacelike surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of complete spacelike hypersurfaces in generalized Robertson-Walker spacetimes

In this paper we study the uniqueness of complete noncompact spacelike hypersurfaces immersed in generalized Robertson-Walker (GRW) spacetimes. According to a suitable restriction on the higher order mean curvature and the norm of the gradient of the height function of the hypersurface, we obtain some rigidity theorems in GRW spacetimes. Besides, we establish nonparametric results on the entire...

متن کامل

Mean Curvature Flow and Bernstein-calabi Results for Spacelike Graphs

This is a survey of our work on spacelike graphic submanifolds in pseudoRiemannian products, namely on Heinz-Chern and Bernstein-Calabi results and on the mean curvature flow, with applications to the homotopy of maps between Riemannian manifolds.

متن کامل

Generalized Calabi-Yau manifolds

A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphisms and closed 2-forms. In the special case of six dimensions we characterize them as critical points of a natural variational problem on clos...

متن کامل

The Landau-ginzburg/calabi-yau Correspondence

More generally, the correspondence relates the FJRW theory of (W,G) to the Gromov-Witten theory of [XW/(G/〈J〉)] whenever a Calabi-Yau condition is satisfied. In this lecture, we will explain why such a correspondence might be expected, at least in the case where W = x1 + · · · + x5 is the Fermat quintic. The perspective we will describe, which is given in terms of variation of stability conditi...

متن کامل

Classification of spacelike surfaces in spacetime

A classification of 2-dimensional surfaces imbedded in spacetime is presented, according to the algebraic properties of their shape tensor. The classification has five levels, and provides among other things a refinement of the concepts of trapped, umbilical and extremal surfaces, which split into several different classes. The classification raises new important questions and opens many possib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Journal of Mathematics

سال: 2019

ISSN: 1093-6106,1945-0036

DOI: 10.4310/ajm.2019.v23.n1.a3